

## Using the Gas Chromatograph

## Description

A 490 Micro Gas Chromatograph (GC) manufactured by Agilent Technologies was utilized in this research in order to detect gas composition for syn-gas samples generated from the gasification system as shown in Figure 1.



Figure 1: Micro 490 Gas Chromatograph

Gas chromatography is a method to achieve separation of components in gas mixtures based on retention time and to analyze the gas concentration based on peak areas. This model combines a micro-machined injector, Thermal Conductivity Detector (TCD) and a narrow-bore column for injection, separation and analysis of gas sample mixtures. There are two channels in this GC.

- 1. Channel 1 with the Molsieve 5A column
- 2. Channel 2 with the PPQ 10m column

During the analysis, Channel 1 is filled with Argon as carrier gas and Channel 2 is filled with helium. The four genie membrane filters installed are for particle and moisture removal as shown in Figure 2.



Figure 2: Genie Membrane Filters



Agilent EZChrom software is used for the instrument control, including checking GC status, reading GC configuration, setting analytical method, data acquisition, and calibration as shown in Figures 3 and 4. After the gas sample is separated into different gas components, EZChrom plots the peaks for each gas component in order of the retention time as shown in Figure 3.

The upper diagram in Figure 3 describes gas concentration in Channel 1 and the lower diagram describes gas concentration in channel 2. For the syn-gas produced from biomass gasification, the peaks of channel 1 are successively hydrogen, oxygen, nitrogen, methane, and carbon monoxide. In Channel 2, the first peak represents all gas components that go through Channel 1 and the second peak stands for the peak of carbon dioxide.



Figure 3: Interface of GC Data Acquisition with the Peak Results





- ●●| 北京県京原原公本のハルトムムは一日の日の日の日本公式市場

Figure 4: Interface of Instrument Status and Setup

The primary parameter settings for the bakeout, standard syn-gas and cool down methods are shown in Table 1.

|                       | Bakeout           |                   | Standard <i>syn</i> -gas |                   | Cool down         |                   |
|-----------------------|-------------------|-------------------|--------------------------|-------------------|-------------------|-------------------|
|                       | Channel 1<br>(Ar) | Channel<br>2 (He) | Channel<br>1 (Ar)        | Channel 2<br>(He) | Channel<br>1 (Ar) | Channel 2<br>(He) |
| Column temp.<br>(°C)  | 180               | 180               | 90                       | 100               | 30                | 30                |
| Inject time<br>(mSec) | 100               | 100               | 255                      | 255               | 100               | 100               |

Table 1: The GC Setting for Bakeout, Standard Syn-gas and Cool Down Method



|                            | Bakeout |         | Standard <i>syn</i> -gas |         | Cool down |         |
|----------------------------|---------|---------|--------------------------|---------|-----------|---------|
| Backflush time<br>(Sec)    | 0       | n/a     | 0                        | n/a     | 0         | 0       |
| Detector state             | Off     | Off     | On                       | On      | Off       | Off     |
| TCD temp. limit<br>check   | On      | On      | On                       | On      | On        | On      |
| Sensitivity                | Auto    | Auto    | Auto                     | Auto    | Auto      | Auto    |
| Invert signal              | Uncheck | Uncheck | Check                    | Uncheck | Uncheck   | Uncheck |
| Pressure mode              | Static  | Static  | Static                   | Static  | Static    | Static  |
| Initial pressure<br>(Psi)  | 21      | 21      | 14                       | 21      | 21        | 21      |
| Acquisition<br>channel     | On      | On      | On                       | On      | On        | On      |
| Sampling<br>frequency      | 100     | 100     | 100                      | 100     | 100       | 100     |
| Run time (Sec)             | 60      | 60      | 240                      | 240     | 60        | 60      |
| Acquisition<br>delay (Sec) | 0       | 0       | 0                        | 0       | 0         | 0       |

Sample gas analysis can be launched after the setting of channel temperature and pressure. Once the GC starts sampling, the sample syn-gas is delivered by the micro-machined injector with corresponding carrier gas, and then sequentially separated by the narrow-bore capillary GC columns and thermal conductivity detector in two channels. The instrument is calibrated by a concentration-known standard syn-gas. On the basis of the calibrated method, EZChrom calculates the sample gas concentration through the peak area, and generates an external standard report to show the percentage of each gas component as shown in Figure 6.





Figure 5: Interface of Sample Gas Concentration Report